Name:	
Algebra 2 - Mixed Review #6	

Date: Period:

Show all work.

Which of the following represents the recursive form for the explicit formula $a_n = 9n + 17$?

(1)
$$a_1 = 9$$
; $a_n = a_{n-1} + 17$ $9(1) + 17 = 3/6$

(2)
$$a_1 = 9$$
; $a_n = 9a_{n-1}$

(2)
$$a_1 = 9; a_n = 9a_{n-1}$$

(3) $a_1 = 26; a_n = a_{n-1} + 9$
(4) $a_1 = 36; a_1 = a_{n-1} + 17$

$$9(a)+17=35$$

(4)
$$a_1 = 26$$
; $a_n = a_{n-1} + 17$

34% of homes in NYS own a fireplace and 18% of homes in NYS own a patio. What percent of homes own both a fireplace and patio?

0.24**(4)**

To the nearest tenth, the value of x that satisfies $2^{x} = -3x + 6$.

3(X-6)

The function f(x) is defined by $f(x) = \frac{2}{3}x + 6$.

Determine $f^{-1}(x)$.

$$(1) \qquad y = \frac{3}{2}x - 9$$

$$(2) \qquad y = \frac{2}{3}x + 4$$

(3)
$$y = \frac{3}{2}x - 18$$

$$y = \frac{3}{2}x - 18$$

$$y = \frac{3}{2}x - 18$$

$$y = \frac{2}{3}x + 6$$

$$x = \frac{2}{3}y + 6$$

$$x = \frac{2}{3}y + 6$$

$$x = \frac{2}{3}y + 6$$

The water level in a draining reservoir is changing such that the depth of water decreases by 12.5% per hour. If the water starts at a depth of 800 feet, then which of the following functions properly models the depth, d, as a function of time, t, in hours since it started draining?

$$(1) d = 800(0.125)^t$$

(2)
$$d = 800(0.875)^{t}$$

(3)
$$d = 800(12.5)^t$$

(4)
$$d = 800(88.5)^t$$

Which of the following has a period of 2?

$$(1) y = -\cos(x)$$

$$(2) y = \sin 2x$$

$$(3) \qquad y = -\cos 2\pi x$$

$$(4) y = \sin \pi x$$

Which expression is equivalent to sec E?

(4)

EF/DF

Which ordered pair is a solution of the system x + y = 5 and $(x + 3)^2 + (y - 3)^2 = 53$?

- (1)(2,3)
- (5.0)(2)
- (-5.10)
- (-4,9)

An angle P, terminates in Quadrant II if

- $\cos P < 0$ and $\csc P < 0$ (1)
- $\sin P > 0$ and $\cos P > 0$ (2)

 $\tan P < 0$ and $\sec P > 0$

Part 2.

1.	Factor completely:	(6x ³ – 5x ² y) – 24xy ² + 20 ₃	y 3)
1.	ractor completely:	(0x - 0x y) - 24xy + 20	כו

X²(6x-5y)-4y²(6x-5y) (x²-4y²)(6x-5y) ((x+2y)(x-2y) (6x-5y)

Determine the solution set to the equation $2x^2 - x = -1$. 2.

·	
14	+ 057

Determine the sum and product of the roots of the equation $4x^2 = 7x + 3$. 3.

$4x^2 - 7x - 3$	= 0	
15=7.	[P=-3,1	ĺ
1	1	

Determine the sum of the first 50 terms of the sequence defined by 16, 22, 28.... 4.

$$a_{60} = 16 + (50 - 1)(6) = 310$$

 $a_{50} = 50(16 + 310) = [8150]$

5. The number of bacteria present in a petri dish can be modeled by the equation $N = 40e^{2t}$ where N is the number of bacteria present in the dish after t hours. Using this model, determine, to the nearest hundredth, the number of hours it will take for N to reach 25,000.

25,000 = 40e In 605 = g 26

1n626 = t

6. Convert 3 radians and express to the nearest minute.

3 = 171.8873385

7. Describe how a controlled experiment can be created to examine the effect of Nutrient A on the growth of a fish.

randomly create it groups one group gets A one does not

Part 3 and 4 Questions.

8. The scores of one class on the Unit 2 mathematics test are shown in the table below.

Find the standard deviation of these scores, to the nearest tenth.

5x = 7,538645026

1		- /
1.	7	61
1	1.	01
1_		

Test Score	Frequency
96	1
92	2
84	(5)
80	(3)
76	6
72	3
-68	

How many students scored within one standard deviation of the mean?

X=79.45 79.45 71.95 86.95

5+3+6+3

9. The given table shows the amount of water vapor, y, that will saturate 1 cubic meter of air at different temperatures, x.

Amount of Water Vapor That Will Saturate 1 Cubic Meter of Air at Different Temperature.

Write an **exponential regression** equation for this set of data, rounding all values to the nearest thousandth.

 $y = ab^{\times}$ a = 4.193833373 b = 1.067571263

Air Temperature (x) (°C)	Water Vapor (y) (g)
-20	1
-10	2
0	5
10	9
20	17
30	29
40	50

Using this equation, predict the amount of water vapor that will saturate 1 cubic meter of air at a temperature of 50°, and round your answer to the nearest tenth of a gram.

 $y = 4.194(1.068)^{50}$ y = 112.5099834y = 112.5

10. Find the exact value of $\csc \frac{\pi}{4}$

45

 $SIN = \frac{1}{\sqrt{2}}$ $\left[CSC = \sqrt{2}\right]$

11. Graph one cycle of the equation: $y = 2\cos(x + \frac{\pi}{2}) + 1$

- 12. The ocean tides on the east coast follow a repeating pattern over time, with the amount of time between each low and high tide remaining relatively constant. On a certain day, low tide occurred at 8 am and high tide occurred at 12 noon. At high tide, the water level was 4 inches above the average local sea level; at low tide it was 4 inches below the average local sea level. Assume the high tide and low tide are the maximum and minimum water levels each day, respectively.
 - a. Write a cosine function of the form, where A and B are real numbers, that models the water level, in inches above or below the average each coast sea level, as a function of the time measured in x hours since 8 am.

$$a = 4$$

$$p = 8$$

$$\frac{2\pi}{b} = 8$$

$$2\pi = 8b$$

$$\frac{2\pi}{8} = 8b$$

$$\frac{7}{4}$$

 $y = 4\cos 4x$

b. On the grid, graph one cycle of this function.

